283 research outputs found

    Dimensionally regularized study of nonperturbative quenched QED

    Get PDF
    We study the dimensionally regularized fermion propagator Dyson-Schwinger equation in quenched nonperturbative QED. We work in arbitrary covariant gauge and perform nonperturbative renormalization numerically. The nonperturbative fermion propagator is solved in D = 4 - 2 * epsilon dimensional Euclidean space for a large number of values of epsilon. Results for D=4 dimensions are then obtained by extrapolation to epsilon = 0. Here we present results using the Curtis-Penningon fermion-photon proper vertex for two values of the coupling, namely alpha=0.6 and alpha=1.5, and compare these to previous studies employing a modified ultraviolet cut-off regularization. The results using the two different regularizations are found to agree to within the numerical precision of the present calculations.Comment: REVTEX 3.0, 15 pages,including 3 eps figures; revised version has minor changes to introduction and conclusion and additional results in tables. Accepted for publication in Physical Review

    Combining transcriptional datasets using the generalized singular value decomposition

    Get PDF
    Background Both microarrays and quantitative real-time PCR are convenient tools for studying the transcriptional levels of genes. The former is preferable for large scale studies while the latter is a more targeted technique. Because of platform-dependent systematic effects, simple comparisons or merging of datasets obtained by these technologies are difficult, even though they may often be desirable. These difficulties are exacerbated if there is only partial overlap between the experimental conditions and genes probed in the two datasets. Results We show here that the generalized singular value decomposition provides a practical tool for merging a small, targeted dataset obtained by quantitative real-time PCR of specific genes with a much larger microarray dataset. The technique permits, for the first time, the identification of genes present in only one dataset co-expressed with a target gene present exclusively in the other dataset, even when experimental conditions for the two datasets are not identical. With the rapidly increasing number of publically available large scale microarray datasets the latter is frequently the case. The method enables us to discover putative candidate genes involved in the biosynthesis of the (1,3;1,4)-β-D-glucan polysaccharide found in plant cell walls. Conclusion We show that the generalized singular value decomposition provides a viable tool for a combined analysis of two gene expression datasets with only partial overlap of both gene sets and experimental conditions. We illustrate how the decomposition can be optimized self-consistently by using a judicious choice of genes to define it. The ability of the technique to seamlessly define a concept of "co-expression" across both datasets provides an avenue for meaningful data integration. We believe that it will prove to be particularly useful for exploiting large, publicly available, microarray datasets for species with unsequenced genomes by complementing them with more limited in-house expression measurements.Andreas W Schreiber, Neil J Shirley, Rachel A Burton and Geoffrey B Finche

    Regularization-independent studies of nonperturbative field theory

    Get PDF
    Copyright © 2000. Submitted to Cornell University’s online archive www.arXiv.org in 2000 by A. W. Schreiber. Post-print sourced from www.arxiv.org.We propose a regularization-independent method for studying a renormalizable field theory nonperturbatively through its Dyson–Schwinger equations. Using QED4 as an example, we show how the coupled equations determining the nonperturbative fermion and photon propagators can be written entirely in terms of renormalized quantities, which renders the equations manifestly finite in a regularization-independent manner. As an illustration of the technique, we apply it to a study of the fermion propagator in quenched QED4 with the Curtis–Pennington electron–photon vertex. At large momenta the mass function, and hence the anomalous mass dimension γm(α), is calculated analytically and we find excellent agreement with previous work. Finally, we show that for the CP vertex the perturbation expansion of γm(α) has a finite radius of convergence.Aye Kızılersü, Andreas W. Schreiber and Anthony G. Williamshttp://www.elsevier.com/wps/find/journaldescription.cws_home/505706/description#descriptio

    The RNA Binding Protein Quaking Regulates Formation of circRNAs

    Get PDF
    SummaryCircular RNAs (circRNAs), formed by non-sequential back-splicing of pre-mRNA transcripts, are a widespread form of non-coding RNA in animal cells. However, it is unclear whether the majority of circRNAs represent splicing by-products without function or are produced in a regulated manner to carry out specific cellular functions. We show that hundreds of circRNAs are regulated during human epithelial-mesenchymal transition (EMT) and find that the production of over one-third of abundant circRNAs is dynamically regulated by the alternative splicing factor, Quaking (QKI), which itself is regulated during EMT. Furthermore, by modulating QKI levels, we show the effect on circRNA abundance is dependent on intronic QKI binding motifs. Critically, the addition of QKI motifs is sufficient to induce de novo circRNA formation from transcripts that are normally linearly spliced. These findings demonstrate circRNAs are both purposefully synthesized and regulated by cell-type specific mechanisms, suggesting they play specific biological roles in EMT

    Comparative transcriptomics in the Triticeae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes.</p> <p>Results</p> <p>We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring). For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex) using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip.</p> <p>Conclusion</p> <p>While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able to distinguish contributions from individual homoeologs. Furthermore, the comparison between the two species leads us to conclude that the conservation of both gene sequence as well as gene expression is positively correlated with absolute expression levels, presumably reflecting increased selection pressure on genes coding for proteins present at high levels. In addition, the results indicate the presence of a correlation between sequence and expression conservation within the Triticeae.</p

    Hospital Outcomes of Community-Acquired SARS-CoV-2 Omicron Variant Infection Compared With Influenza Infection in Switzerland

    Full text link
    IMPORTANCE: With the ongoing COVID-19 pandemic, it is crucial to assess the current burden of disease of community-acquired SARS-CoV-2 Omicron variant in hospitalized patients to tailor appropriate public health policies. Comparisons with better-known seasonal influenza infections may facilitate such decisions. OBJECTIVE: To compare the in-hospital outcomes of patients hospitalized with the SARS-CoV-2 Omicron variant with patients with influenza. DESIGN, SETTING, AND PARTICIPANTS: This cohort study was based on a national COVID-19 and influenza registry. Hospitalized patients aged 18 years and older with community-acquired SARS-CoV-2 Omicron variant infection who were admitted between January 15 and March 15, 2022 (when B.1.1.529 Omicron predominance was >95%), and hospitalized patients with influenza A or B infection from January 1, 2018, to March 15, 2022, where included. Patients without a study outcome by August 30, 2022, were censored. The study was conducted at 15 hospitals in Switzerland. EXPOSURES: Community-acquired SARS-CoV-2 Omicron variant vs community-acquired seasonal influenza A or B. MAIN OUTCOMES AND MEASURES: Primary and secondary outcomes were defined as in-hospital mortality and admission to the intensive care unit (ICU) for patients with the SARS-CoV-2 Omicron variant or influenza. Cox regression (cause-specific and Fine-Gray subdistribution hazard models) was used to account for time-dependency and competing events, with inverse probability weighting to adjust for confounders with right-censoring at day 30. RESULTS: Of 5212 patients included from 15 hospitals, 3066 (58.8%) had SARS-CoV-2 Omicron variant infection in 14 centers and 2146 patients (41.2%) had influenza A or B in 14 centers. Of patients with the SARS-CoV-2 Omicron variant, 1485 (48.4%) were female, while 1113 patients with influenza (51.9%) were female (P = .02). Patients with the SARS-CoV-2 Omicron variant were younger (median [IQR] age, 71 [53-82] years) than those with influenza (median [IQR] age, 74 [59-83] years; P < .001). Overall, 214 patients with the SARS-CoV-2 Omicron variant (7.0%) died during hospitalization vs 95 patients with influenza (4.4%; P < .001). The final adjusted subdistribution hazard ratio (sdHR) for in-hospital death for SARS-CoV-2 Omicron variant vs influenza was 1.54 (95% CI, 1.18-2.01; P = .002). Overall, 250 patients with the SARS-CoV-2 Omicron variant (8.6%) vs 169 patients with influenza (8.3%) were admitted to the ICU (P = .79). After adjustment, the SARS-CoV-2 Omicron variant was not significantly associated with increased ICU admission vs influenza (sdHR, 1.08; 95% CI, 0.88-1.32; P = .50). CONCLUSIONS AND RELEVANCE: The data from this prospective, multicenter cohort study suggest a significantly increased risk of in-hospital mortality for patients with the SARS-CoV-2 Omicron variant vs those with influenza, while ICU admission rates were similar
    corecore